Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Gerontol ; : 7334648241248294, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38685877

RESUMO

Social engagement is fundamental to successful aging and linked to better emotional, physical, and cognitive health. Maintaining social engagement is challenging for many older adults but especially for those with a cognitive impairment (CI). Information and communication technologies (ICT) can provide enhanced opportunities for social and cognitive engagement for older adults with a CI via increased information, education, and social connectivity access. This study used a pre-test post-test design to evaluate the feasibility, acceptability, and preliminary efficacy of the PRISM-CI software system, a tablet-based application designed to enhance access to resources, information, and social engagement, in 52 individuals with a CI between the ages of 65-88 years who had access to PRISM-CI for five months. Findings show that social isolation, loneliness, and depressive symptoms significantly decreased, and mobile device proficiency significantly increased, from baseline to follow-up. Results highlight ICTs potential to foster social engagement among older adults with a CI.

3.
J Chem Theory Comput ; 5(9): 2531-43, 2009 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26616630

RESUMO

Structure-based and physics-based coarse-grained molecular force fields have become attractive approaches to gain mechanistic insight into the function of large biomolecular assemblies. Here, we study how both approaches can be combined into a single representation, that we term ELNEDIN. In this representation an elastic network is used as a structural scaffold to describe and maintain the overall shape of a protein and a physics-based coarse-grained model (MARTINI-2.1) is used to describe both inter- and intramolecular interactions in the system. The results show that when used in molecular dynamics simulations ELNEDIN models can be built so that the resulting structural and dynamical properties of a protein, including its collective motions, are comparable to those obtained using atomistic protein models. We then evaluate the behavior of such models in (1) long, microsecond time-scale, simulations, (2) the modeling of very large macromolecular assemblies, a viral capsid, and (3) the study of a protein-protein association process, the reassembly of the ROP homodimer. The results for this series of tests indicate that ELNEDIN models allow microsecond time-scale molecular dynamics simulations to be carried out readily, that large biological entities such as the viral capsid of the cowpea mosaic virus can be stably modeled as assemblies of independent ELNEDIN models, and that ELNEDIN models show significant promise for modeling protein-protein association processes.

4.
Biopolymers ; 90(2): 117-30, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18260136

RESUMO

Fragments of G protein-coupled receptors (GPCRs) are widely used as models to investigate these polytopic integral-membrane, signal-transducing molecules, but have proven difficult to prepare in quantities necessary for NMR analyses. We report on the biosynthesis of two double transmembrane (TM) containing fragments of Ste2p, the alpha-factor GPCR from the yeast Saccharomyces cerevisiae. Ste2p(G31-T110) [TM1-TM2] and Ste2p(R231-S339) [TM6-TM7-CT40] were expressed as TrpDeltaLE fusion proteins in Escherichia coli and released by CNBr cleavage. Expression yields were optimized using different strains and induction parameters, and by performing CNBr cleavage directly on inclusion bodies. Nonlabeled and uniformly labeled [15N]-TM1-TM2 and TM6-TM7-CT40, as well as uniformly labeled [15N,13C]-TM1-TM2 and TM1-TM2 selectively labeled with [15N-Ala], [15N-Phe], [15N-Leu], [15N-Ile], and [15N-Val] were prepared. Yields of target peptides with >95% homogeneity varied from 3 mg/L of fermentation ([15N]-TM6-TM7-CT40) to 20 mg/L (selectively labeled TM1-TM2). The high level biosynthesis and the efficient CNBr processing and purification yields allowed the initiation of a comprehensive biophysical analysis of TM1-TM2 and TM6-TM7-CT40. Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis showed that TM1-TM2 was monomeric in this micellar environment, whereas TM6-TM7-CT40 migrated as a dimer. CD analysis indicated that TM1-TM2 was highly helical in SDS and 1-palmitoyl-2-hydroxy-sn-glycero-3-[phospho-RAC-(1-glycerol)], but had a tendency to aggregate in dodecylphosphocholine micelles. Similar results were found with TM6-TM7-CT40. Conditions for NMR measurements were optimized, and both TM1-TM2 and TM6-TM7-CT40 exhibited more than 90% of the expected crosspeaks in the [15N,1H]-HSQC spectrum. These findings set the stage for the determination of the 3D structure of these large domains of a GPCR in micelles using high-resolution NMR.


Assuntos
Membrana Celular/metabolismo , Expressão Gênica , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Fator de Acasalamento/química , Receptores de Fator de Acasalamento/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Aminoácidos/química , Aminoácidos/metabolismo , Fenômenos Biofísicos , Biofísica , Dicroísmo Circular , Clonagem Molecular , Corpos de Inclusão/metabolismo , Micelas , Dados de Sequência Molecular , Mutação/genética , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores de Fator de Acasalamento/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Dodecilsulfato de Sódio
5.
J Am Chem Soc ; 128(39): 12766-77, 2006 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-17002371

RESUMO

Like other protein-protein interaction domains, PDZ domains are involved in many key cellular processes. These processes often require that specific multiprotein complexes be assembled, a task that PDZ domains accomplish by binding to specific peptide motifs in target proteins. However, a growing number of experimental studies show that PDZ domains (like other protein-protein interaction domains) can engage in a variety of interactions and bind distinct peptide motifs. Such promiscuity in ligand recognition raises intriguing questions about the molecular and thermodynamic mechanisms that can sustain it. To identify possible sources of promiscuity and selectivity underlying PDZ domain interactions, we performed molecular dynamics simulations of 20 to 25 ns on a set of 12 different PDZ domain complexes (for the proteins PSD-95, Syntenin, Erbin, GRIP, NHERF, Inad, Dishevelled, and Shank). The electrostatic, nonpolar, and configurational entropy binding contributions were evaluated using the MM/PBSA method combined with a quasi-harmonic analysis. The results revealed that PDZ domain interactions are characterized by overwhelmingly favorable nonpolar contributions and almost negligible electrostatic components, a mix that may readily sustain promiscuity. In addition, despite the structural similarity in fold and in recognition modes, the entropic and other dynamical aspects of binding were remarkably variable not only across PDZ domains but also for the same PDZ domain bound to distinct ligands. This variability suggests that entropic and dynamical components can play a role in determining selectivity either of PDZ domain interactions with peptide ligands or of PDZ domain complexes with downstream effectors.


Assuntos
Proteínas/química , Simulação por Computador , Ligantes , Modelos Químicos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Eletricidade Estática , Especificidade por Substrato , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...